
INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

116 IJDCST

Top K Fuzzy Search Results over XML Data
1 Ch.Lavanya Susanna, 2Dr.D.Rajeshwara Rao, PHD

1 M Tech, 2Professor
1,2K.L University, Vaddeswaram, Guntur (dt).

Abstract: Efficient query retrieval systems are implemented for RDBMS systems only and not for XML based
systems. Uses keyword-search system over XML data. A user composes a keyword query, submits it to the system,
and retrieves relevant answers. They are using fuzzy type-ahead search over XML data. Even though this concept
is nothing new for RDBMS based systems, this is a new information-access paradigm for XML based systems.
Here, the system searches XML data on the fly as the user types in query keywords. Prior Systems Use Minimal-
Cost Tree based techniques for producing top-k results. Minimal-Cost Tree based approaches are efficient as long as
the query keywords are singular or dual utmost. As the number of attributes in the keyword for fuzzy query
increases Minimal-Cost Tree construction is a computationally expensive process. For each criterion, we must
assign a weight that describes its relativity importance. The best alternative is obtained by the affecting weights
vector on decision matrix. Based on the Fuzzy Multiple Attribute Decision Making (FMADM) algorithm we intend
to support multi attribute based queries over xml data with reduced computations.

Index Terms: Interconnection semantics, keyword search, XML, XML, snippets, type-ahead search, fuzzy search.

I. INTRODUCTION

The extreme success of web search engines
makes keyword search the most popular search
model for ordinary users. As XML is becoming a
standard in data representation, it is desirable to
support keyword search in XML database. It is a user
friendly way to query XML databases since it allows
users to pose queries without the knowledge of
complex query languages and the database schema.

In most systems that incorporate keyword
search into relational or XML data [1, 3, 8, 9, 10], the
sole criterion is proximity (e.g., Jones is deemed the
manager of Harris if these keywords appear in a

small sub tree of the given XML document) In [5], it
is argued that in a tree document, the keywords are
semantically related if they appear in a uniquely-
labeled sub tree of the document. This approach is
extended in [4] by incorporating information-retrieval
techniques. In the work of [4, 5] is improved by
introducing an approach that avoids some cases of
incorrect results.

To be self-contained, a result snippet should
represent a semantic unit. Suppose Figure 1 shows

the fragments of a result of query Texas
apparel. If we choose the fragment between keyword
matches in the corresponding XML document as the
snippet of this query result, just as what a text search
engine does, the users will not be able to see that both
matches are nested in the tag retailer, and thus not
able to easily understand that this query result is
about an apparel retailer in Texas (rather than a book
discussing the popular apparel styles in Texas).

The second goal of snippets is to allow users
to easily distinguish different query results from each
other. To achieve this in text document search, result
snippets often include the document titles.
Analogously, we propose to select the unique
identifier (aka. key) of a query result into its snippet
to identify this query result and highlight the
fundamental differences among results. However, it
is not clear how to identify the key of a query result.

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

117 IJDCST

The third goal is to design snippets that
provide a representative summary of the query result
by including the most prominent features in the
result. Intuitively, a prominent feature is often
reflected by a large number of occurrences of such a
feature in the result. Continuing our example,
suppose Brook Brothers has 1000 clothes of different
styles, among which 600 are for men and 40 for
children.

By using these three goals process hierarchy we
will define the contribution of our application in
the efficient fuzzy search results accurately.

Figure 1: Part of a Query Result of Query Texas apparel retailer and Statistics about Value Occurrences.

The contributions of our work include:

• This is the first work that studies the problem of
generating query result snippets for XML search.

• We identify four goals that a good query result
snippet should meet in order to help users quickly get
the essence of a query result and assess its relevance.

• To address the goals, we identify the significant
information in a query result to be selected into the
snippet.

• We prove that the decision problem of whether we
can construct a snippet of a given size limit that
contains all the significant information is NP-
complete.

• We design an efficient algorithm to generate
snippets that capture the identified significant
information given the snippet size limit.

• A system for generating snippet for XML search
has been implemented and tested for its efficiency
and effectiveness through experimental studies.

II. RELATED WORK

Inspired by the great success of IR approach on web
search (especially its distinguished ranking
functionality), we aim to achieve similar success on
XML keyword search, to solve the above three issues
without using any schema knowledge. The main
challenge we are going to solve is how to extend the
keyword search techniques in text databases (IR) to
XML databases, because the two types of databases

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

118 IJDCST

are different. First, the basic data units in text
databases searched by users are flat documents. For a
given query, IR systems compute a numeric score for
each document and rank the document by this score.
In XML databases, however, information is stored in
hierarchical tree structures.

Statistics is a mathematical science
pertaining to the collection, analysis, interpretation or
explanation of data; it can be used to objectively
model a pattern or draw inferences about the
underlying data being studied. Although keyword
search is a subjective problem that different people
may have different interpretations on the same
keyword query, statistics provides an objective way
to distinguish the major search intention(s).

III. FUZZY RESULTS WITH SINGLE
QUERY PROCESS

Exact Search: We are submitting query with single
keyword then it will display relevant results
regarding their requirement. The closeness of a match
is measured in terms of the number of primitive
operations necessary to convert the string into an
exact match. This number is called the between the
string and the pattern. Some approximate matchers
also treat transposition, in which the positions of two
letters in the string are swapped, to be a primitive
operation. Changing cost to cots is an example of a
transposition. Different approximate matchers impose
different constraints. Some matchers use a single
global unweighted cost, that is, the total number of
primitive operations necessary to convert the match
to the pattern. For example, if the pattern
is coil, foil differs by one substitution, coils by one
insertion, oil by one deletion, and foal by two
substitutions. If all operations count as a single unit
of cost and the limit is set to one, foil, coils,
and oil will count as matches while foal will not.

Other matchers specify the number of operations of
each type separately, while still others set a total cost
but allow different weights to be assigned to different
operations. Some matchers permit separate
assignments of limits and weights to individual
groups in the pattern

Traditionally, approximate string matching
algorithms are classified into two categories: on-line
and off-line. With on-line algorithms the pattern can
be preprocessed before searching but the text cannot.
In other words, on-line techniques do searching
without an index. Early algorithms for on-line
approximate matching were suggested by Wagner
and Fisher and by Sellers. [5] Both algorithms are
based on dynamic programming but solve different
problems. Sellers' algorithm searches approximately
for a substring in a text while the algorithm of
Wagner and Fisher calculates Leven shtein distance,
being appropriate for dictionary fuzzy search only.

On-line searching techniques have been repeatedly
improved. Perhaps the most famous improvement is
the bitmap algorithm (also known as the shift-or and
shift-and algorithm), which is very efficient for
relatively short pattern strings.

Fuzzy Search:

A fuzzy search is a process that locates Web pages
that are likely to be relevant to a search argument
even when the argument does not exactly correspond
to the desired information. A fuzzy search is done by
means of a fuzzy matching program, which returns a
list of results based on likely relevance even though
search argument words and spellings may not exactly
match. Exact and highly relevant matches appear
near the top of the list. Subjective relevance ratings,
usually as percentages, may be given.

A fuzzy matching program can operate like a spell
checker and spelling-error corrector. For example, if
a user types "Mississippi" into Yahoo or Google
(both of which use fuzzy matching), a list of hits is
returned along with the question, "Did you mean
Mississippi?" Alternative spellings, and words that
sound the same but are spelled differently, are given.
A fuzzy matching program can compensate for
common input typing errors, as well as errors
introduced by optical character recognition scanning
of printed documents. The program can return hits
with content that contains a specified base word
along with prefixes and suffixes. For example, if
"planet" is entered as a search word, hits occur for
sites containing words such as "protoplanet" or
"planetary." The program can also find synonyms and
related terms, working like an online thesaurus or

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

119 IJDCST

encyclopedic cross-reference tool. In the Ask Jeeves
search engine, if the word "galaxy" is entered, hits
are returned such as "Galaxy Photography," "Milky
Way," and "The Nine Planets Solar System Tour."

Fuzzy matching programs usually return irrelevant
hits as well as relevant ones. Superfluous results are
likely to occur for terms with multiple meanings,
only one of which is the meaning the user intends. If
the user has only a vague or general idea of the topic,
or does not know exactly what to look for, the ratio
of relevant hits to irrelevant hits tends to be low. (The
ratio is even lower, however, when an exact matching
program is used in this situation.)

Fuzzy searching is much more powerful than exact
searching when used for research and investigation.
Fuzzy searching is especially useful when
researching unfamiliar, foreign-language, or
sophisticated terms, the proper spellings of which are
not widely known. Fuzzy searching can also be used
to locate individuals based on incomplete or partially
inaccurate identifying information.

IV. FUZZY RESULTS WITH SINGLE
QUERY PROCESS

For a keystroke that invokes a query, we first
tokenize the query string into keywords, k1; k2; . . . ;
k‘. For each keyword ki (1 < i< L), we compute its
corresponding active nodes, and for each such active
node, we retrieve its leaf descendants and
corresponding inverted lists.

As consider the above example present in
the single query submission we will find the query
results related to submitted query. As the same time
we will find query results related to multi keywords
with single query. For example, we will find the
results of “Mango” then submit with multi
keywords related to Mango, like Mango features and
mango color mango types. In this way we will find
the efficient results related query submission.

Assume a user types in a query “db mics”
letter by letter. As the user types in the keyword
“db,” for each keystroke, we incrementally answer
the query as discussed before. We identify predicted
word “db” and compute the union list Udb ¼ f13;

16g. When the user types in “db mics,” we find the
active nodes micð7Þ; micesð9Þ; michð10Þg,
identify the predicted words of the active nodes,
“mices” and “mich,” and compute the union list
Umics ¼ f14; 18; 26g. Then, we compute the ELCAs
on top of the two union lists Udb and Umics, get the
ELCAs (XML elements 12 and 15), and return the
sub trees rooted at the two ELCAs. Accordingly, we
can incrementally answer the keyword query “db
mics.”

V. TOP-K FUZZY SEARCH RESULTS

We are consider the top preferable results in the
query results using Top-K algorithms present in the
data retrieval of data mining applications. Keyword
search in XML data has attracted great attention
recently. Xu and Papakon stations proposed smallest
lowest common ancestor (SLCA) to improve search
efficiency. Sun et al. studied multi way SLCA-based
keyword search to enhance search performance. They
proposed several optimization techniques using mesh
to answer keyword queries over streams. Type-ahead
search is a new topic to query relational databases.

An instance of an enumeration problem consists of
an input x and a finite set A(x) of answers. An
enumeration algorithm E prints all the answers of
A(x) without repetitions. We assume that there is an
underlying ranking function that maps answers to
positive real numbers. The rank of an answer a is
denoted by rank (a). Suppose that the algorithm E
Enumerates the sequence a1, . . . , an. If rank (ai) ≥
rank (aj) holds for all 1 ≤ i ≤ j ≤ n, then the
enumeration is in ranked order. The delay of E is the
length of time (i.e., execution cost) between printing
two successive answers. There is also a delay at the
beginning, i.e., until the first answer is printed, and at
the end, i.e., until the algorithm terminates after
printing the last answer.

VI. EXPERIMENTAL RESULTS

We employed the data sets DBLP6 and XMark.7 the
sizes of DBLP and XMark were 510 and 113 MB,
respectively. In this paper we are developing
essential hybrid algorithm for XML data based on
XRANK conditions. The verb XRANK allocates

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

120 IJDCST

items to buckets based on value. If the total number
of items is evenly divisible by the number of buckets,
then each bucket will have the same number of items;
otherwise the first buckets have extra items.

Figure 2: XRANK Architecture

We are giving XML documents as a input with single
keyword and multi keyword submission then it will
check that XML document can be related to that
single and multi keyword results as follows.

0

20

40

60

80

100

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

Single

Multi

Top-K

Figure 3: Query results Comparison

As discussed in the above experiment we
will define efficient fuzzy results compared with
existing approaches in single and multiple keywords
Submission.

VII.CONCLUSION

We proposed effective index structures, efficient
algorithms, and novel optimization techniques to
progressively and efficiently identify the top-k
answers. We examined the LCA-based method to
interactively identify the predicted answers. By using
hybrid algorithm for accessing efficient results in the
XML documents. We also define the comparative
results with user entry in the XML data with existing
approaches to the proposed techniques. Top-K results
are also defining the comparative results with user

click in the XML documents data retrieval using
XML query results.

VIII. REFERENCES

[1] Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark:
Top-k Keyword Query in Relational Databases,”
Proc. ACM SIGMOD Int’l Conf. Management of
Data, pp. 115-126, 2007.
[2] Y. Luo, W. Wang, and X. Lin, “Spark: A
Keyword Search Engine on Relational Databases,”
Proc. Int’l Conf. Data Eng. (ICDE), pp. 1552-1555,
2008.

[3] A. Markowetz, Y. Yang, and D. Papadias,
“Keyword Search on Relational Data Streams,”
Proc. ACM SIGMOD Int’l Conf. Management
of Data, pp. 605-616, 2007.
[4] L. Qin, J.X. Yu, and L. Chang, “Keyword
Search in Databases: The Power of Rdbms,”
Proc. ACM SIGMOD Int’l Conf. Management
of Data, pp. 681-694, 2009.
[5]Arasu, A., Babu, S., Widom, J. The CQL
Continuous Query Language: Semantic
Foundations and Query Execution. VLDB
Journal, 15(2): 121–142, 2006.
[6] Guo, L., Shao, F., Botev, C.,
Shanmugasundaram, J.: XRANK:
ranked keyword search over XML documents.
In: SIGMOD (2003)
[7] Hristidis, V., Gravano, L., Papakonstantinou,
Y.: Efficient IR-s.
[8]. Shao, F., Guo, L., Botev, C., Bhaskar, A.,
Chettiar, M.M.M., Yang,
F., Shanmugasundaram, J.: Efficient keyword
search over virtual
XML views. In: VLDB, pp. 1057–1068 (2007).

